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Abstract 
 
Artificial Neural Networks (ANN) have been applied to many interesting problems in 
different areas of science, medicine and engineering and in some cases, they provide state-
of-the-art solutions. This paper investigates the application of an ANN model in mining to 
predict the Drillability Index (DI) of a rock mass given rock parameters such as uniaxial 
compressive strength, shear strength, tensile strength, abrasion and hardness. Drillability 
indicates whether penetration is easy or hard while penetration rate indicates whether it is 
fast or slow. Therefore, prediction of the drillability and penetration rate is very important 
in rock drilling. Penetration rate is a necessary value for the cost estimation and the 
planning of the drilling project. According to results of this study, Uniaxial Compressive 
Strength (UCS) rating has the highest weight of 0.051083 among the three parameters 
studied which reconfirms the literature review finding which indicates that UCS is the most 
important parameter in predicting drillability. 
 
Keywords:  Artificial Neural Networks, Drillability Index, Artificial Intelligence, 
Penetration Rate. 
 
 
INTRODUCTION 
 
Neural networks are powerful forecasting 
tools that draw on the most recent 
developments in artificial intelligence 
research. They are non-linear models that 
can be trained to map past and future values 
of time series data and thereby extract 
hidden structures and relationships that 
govern the data. Neural networks are applied 
in many fields such as computer science, 
engineering, medical and criminal 
diagnostics, biological investigation, and 
economic research. They can be used for 
analysing relations among economic and 
financial phenomena, forecasting, data 
filtration, generating time-series, and 

optimization (Hawley, Johnson, and Raina, 
1990; White, 1988; White 1996; Terna, 
1997; Cogger, Koch and Lander. 1997; 
Cheh, Weinberg, and Yook, 1999; Cooper, 
1999; Hu and Tsoukalas, 1999; Moshiri, 
Cameron, and Scuse, 1999; Shtub and 
Versano, 1999; Garcia and Gencay, 2000; 
and Hamm and Brorsen, 2000). 
 
An artificial neural network is a 
mathematical model or computational model 
based on biological neural networks, in other 
words it is an emulation of a biological 
neural system (Figure 1). It consists of an 
interconnected group of artificial neurons 
and processes information using a 
connectionist approach to computation. In 
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most cases an ANN is an adaptive system 
that changes its structure based on external 
or internal information that flows through 
the network during the learning phase.  
 
ARTIFICIAL NEURAL NETWORK 

STRUCTURE 
 
The model of the artificial neuron or 
processing element (PE) forms the basis of 
the ANN structure (Figures 2 and 3). 

 
 

 
Figure 1: Structure of biological and artificial neural network systems 
 

 
Figure 2: Artificial neuron structure or Processing Element (Haykin, 1999) 
 

 
Figure 3:  A Model of a “Processing Element” (DACS, 1992) 
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Figure 4: Typical structure and operation of ANNs (Shahin, Jaksa & Maier, 2008) 
 
 
This layered structure is the most common in 
ANNs and is usually called the fully 
connected feed forward or a cyclic network. 
However, there are ANNs that do not adopt 
this structure. The starting point of the ANN 
structure is a layer of input units that allows 
the entering of information into the network 
(Figure 4). The input units cannot be 
considered as PEs mainly because there is no 
processing of information taking place at 
them with the exception of normalisation 
(when required). Normalisation ensures that 
changes in the signals of different inputs 
have the same effect on the network’s 
behaviour regardless of their magnitude. 
 
The Backpropagation Algorithm 
 
The backpropagation algorithm is used in 
layered feed-forward ANNs (Rumelhart and 
McClelland, 1986). This means that the 
artificial neurons are organized in layers, and 
send their signals “forward”, and then the 
errors are propagated backwards. The 
network receives inputs by neurons in the 
input layer, and the output of the network is 
given by the neurons on an output layer. 
There may be one or more intermediate 
hidden layers. The backpropagation 
algorithm uses supervised learning, which 
means that an algorithm is provided with 

examples of the inputs and outputs one 
wants the network to compute and then the 
error (difference between actual and 
expected results) is calculated. The idea of 
the backpropagation algorithm is to reduce 
this error, until the ANN learns the training 
data. The training begins with random 
weights, and the goal is to adjust them so that 
the error will be minimal. 
 
Connection / Synaptic weights 
 
The signals are multiplied by a weight which 
is different for every connection. Connection 
weights have the function of amplifying, 
attenuating or changing the sign of the input 
signal. The scalar weights determine the 
strength of the connections between 
interconnected neurons. A zero weight 
represents the absence of a connection and a 
negative weight represents an inhibitory 
relationship between nodes. In general, the 
output of node i is multiplied by the weight 
of the connection between node i and j to 
produce the input signal to node j (XiWji). 
Hence connection weights represent the 
strength of the connection between two 
nodes.  
 
Following the input layer is one or more 
internal or hidden layers (see Figure 4). The 
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use of the word hidden is mainly due to the 
fact that they are not accessible from outside 
the ANN. The first hidden layer is fully 
interconnected with the units of the input 
layer. In other words, all Processing 
Elements of the hidden layer receive the 
signal from each input unit. In the case of 
more than one hidden layers, there will be 
full interconnection between subsequent 
layers as in the case of the input and first 
hidden layer. Each processing element in a 
specific layer is fully or partially connected 
to many other processing elements via 
weighted connections. From many other 
processing elements, an individual 
processing element receives its weighted 
inputs, which are summed and a bias unit or 
threshold is added or subtracted (Equation 
1).  
 

   

       (1) 
 
where:  
 bk is the bias. 
 
The bias unit is used to scale the input to a 
useful range to improve the convergence 
properties of the neural network.  
 
Transfer functions 
 
Transfer functions are mathematical 
formulae that give the output of a processing 
element as a function of its input signal. 
Transfer functions can take a variety of 
forms: 
 
(i). Threshold function; 
(ii). Hard limiters; and 
(iii). Continuous function; 
 
The result of this combined summation is 
passed through a transfer function (e.g. 
logistic sigmoid or hyperbolic tangent) to 
produce the output of the processing element 
(Equations 2 and 3).  
 
Hyperbolic tangent �(�) = tanh � 

																																	= 1 −
�

�����	(��)
      (2) 

 

Logistic �(�) =
�

�����	(��)
       (3) 

 
Formation of training, testing and 

validation sets 
 
The data set is divided into three distinct sets 
called training, testing and validation sets. 
The training set is the largest set and is used 
by the neural network to learn patterns 
present in the data. The testing set is used to 
evaluate the generalisation ability of a 
supposedly trained network. A final check 
on performance of the trained network is 
made using a validation set. 
 
Learning 
 
Learning is the process in which the weights 
are adjusted in response to training data 
provided at the input layer and, depending 
on the learning rule, at the output layer. The 
learning process allows a network to adapt 
its response with time in order to produce 
desired output. Learning methods in neutral 
network can be broadly classified into five 
types; 
 
(i). Supervised learning; 
(ii). Unsupervised leaning; 
(iii). Graded learning; 
(iv). Hybrid learning; and  
(v). Non-adaptive learning. 
 
In this study, supervised learning will be 
used adjusting the weights. This type of 
learning is represented in Figure 5. 
 
ANN MODEL FOR DRILLABILITY 
INDEX (DI) DETERMINATION 
 
The basic architecture of the ANN for 
determining the drillability Index consists of 
three types of neuron layers i.e., five input 
parameters, one hidden layer and one output 
layer (the drillability index).   
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Figure 5: Typical learning cycle in the ANN Model 
 
 
According to Kapageridis, 2002, the use of 
the word hidden is mainly due to the fact that 
they are not accessible from outside the 
ANN. The first hidden layer is fully 
interconnected with the units of the input 
layer. In other words, all PEs of the hidden 
layer receive the signal from each input unit. 
The signals are multiplied by a weight which 
is different for every connection. 
 
Parameters of rock mass drillability 
classification 
 
Drilling and blasting play vital roles in both 
opencast and underground mining. These 
operations do not only affect the cost of 
production directly but as well the overall 
operational costs (Busuyi, 2009). The 
penetration rate and economics of the holes 
opened during the development and 
production activities in underground and 
open-pit mines play crucial roles. Therefore, 
prediction of the penetration rate is very 
important in rock drilling. The penetration 
rate is a necessary value for the cost 
estimation and the planning of the project. 
Drillability and penetration rate can be 
defined as similar terms. While drillability 
indicates whether penetration is easy or hard, 
penetration rate indicates whether it is fast or 
slow. 
 
Rock drilling is performed with a number of 
techniques ranging from rotary/percussive 
drilling in very hard rock, via 

rotary/crushing drilling in medium hard 
rock, down to cutting in soft rock types. 
Rock drilling mainly depends on operational 
variables and rock characteristics. 
Operational variables are known as 
controllable parameters: rotational speed, 
thrust, blow frequency and flushing. 
However, rock properties and geological 
conditions are uncontrollable parameters 
(McGregor, 1967; Beste, et al., 2007). The 
hardness of the rock, rock strength (i.e., 
uniaxial compressive strength, shear 
strength, tensile strength, etc.) and abrasion 
are the most important unchangeable factors. 
Taking into consideration the optimum 
penetration rate, choosing the correct 
drilling machine, the petrographic structure 
of the rock, its hardness, abrasion, physical 
characteristics and mechanical properties are 
to be determined firstly by in-situ and 
laboratory studies.  Therefore, the 
performance of drilling is dependent on 
technical characteristics of the drilling, 
drillability of rock and work organization. 
 
Determination of model inputs 
 
There are 5 input parameters, affecting rock 
drillability as below: 
 
(i). Uniaxial Compressive Strength 

(UCS); 
(ii). Shear strength; 
(iii). Tensile strength; 
(iv). Abrasion; and 
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(v). Hardness. 
 
These parameters can be subdivided into 
four categories, which are rock physical 
properties, rock mechanical properties, rock 
mass parameters, and the indexes developed 
by researchers. The most widely accepted 
parameters among each category are listed 
below. 
 
(i). Rock Mechanical Characteristics: 

UCS and tensile strength 
(ii). Rock Physical Properties: Density and 

Porosity; 
(iii). Rock Mass Parameters: P-wave 

velocity and discontinuity frequency; 
and 

(iv). Some indexes to express rock 
properties regarding drillability such 
as: Specific Energy and Drilling Rate 
Index. 

 

The most widely used rock mechanical 
parameter is UCS, which has been reported 
in 25 papers reviewed as part of this 
research. Among rock physical properties, 
density was the most adopted parameter. 
Moreover, in aspect of rock mass 
parameters, P-wave velocity is the most 
recognized one. Therefore, a rock drillability 
characterization system was developed to 
incorporate UCS, density and P-wave 
velocity, representing rock mechanical 
characteristics, physical properties and rock 
mass parameters respectively, to estimate 
the drillability. The parameters and their 
respective symbols are provided in Table 1. 
 
Data from an experimental study conducted 
by Howarth, et al (1986) was utilized to 
investigate the relationship between UCS 
and penetration rate. The relationship 
between penetration rates and UCS values is 
shown in Figure 6. 

 
Table 1: Input and output parameters 

Type of data Name of parameter Symbol Unit 

Inputs Uniaxial compressive strength X1 MPa 

 P-wave velocity X2 km/sec 

 Density X3 kg/m3 

Output Rock Drillability Characterization index  (RDC index) I 1 

 
 

 
Figure 6: Relation between UCS and penetration rate 
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Uniaxial compressive strength (UCS) 
ranging from 20-100 MPa, is divided into 
four classes as shown in Table 2. Roughly a 
penetration rate is allocated to each class 
according to Figure 6.  
 
Following the same procedure, data from the 
study conducted by Howarth, et al (1986) 
was also utilized to investigate the 
relationship between P-wave velocity, 
density and penetration rate. P-wave 
velocity ranging from 2 to 7 Km/sec is 
divided into four classes and shown in Table 

3. 
 
Density parameter ranging from 2 to 2.8 
g/cm3 is divided into 4 classes and is shown 
in Table 4. 
 
Weight Analysis 
 
A data set from the research conducted by 
Niyazi (2011) was used to calculate the 
weight for diamond drilling. Based on the 
rating system calculated before, the original 
data was then rated and tabulated in Table 5. 

 
 
Table 2: Uniaxial compressive strength rating 

UCS (MPa) 20 - 30 30 - 40 40 – 50 50 – 100 

Penetration Rate (mm/min) 190 170 100 40 

 
 
Table 3: Rating of P-wave velocity 

 
 
Table 4: Density rating 

Density (g/cm3) 2 – 2.2 2.2 – 2.4 2.4 – 2.6 2.6 – 2.8 

Penetration Rate (mm/min) 290 205 125 40 

 
 
Table 5: Niyazi (2011) dataset rating 

Rock type UCS P-Wave Density rating Penetration 

Andsite 40 135 125 2.08 

Afyon marble 40 5 40 9.97 

Beige marble 40 5 40 2.69 

Grey turf 170 230 290 18.53 

Pink turf 190 230 290 31.91 

Travertine 190 80 248 2.83 

Travertine 190 135 290 25.07 

Travertine 190 43 290 23.93 

 

P-wave Velocity (Km/sec) 2 – 3 3 – 4 4 – 5 5 - 7 

Penetration Rate (mm/min) 230 135 80 5 
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Based on the above input parameters, the 
computation mode of the rock mass 
drillability is given in Equation 4 as well as 
in Figure 5; Y is the output parameter of the 
ANN i.e. the rock mass drillability Index. 
 
Y = {X1, X2, X3}         (4) 
where: 

X1: Uniaxial Compressive Strength 
(MPa); 
X2: P-wave velocity (km/s); and 
X3: Density (kg/m3). 
 

To approximate the weights in the model, 
directed random search is used. This method 
is based on random optimisation method of 
Matyas, 1965 and also includes refinements 
proposed by Solis and Wets, 1981. Unlike 
calculus based gradient descent methods, 
which move down the error surface in 
weight space, directed random search 
networks take random steps in weight space 
in an attempt to find the smallest error. A 
directed component is added to the random 
step so that previously successful directions 
are pursued.  
 
The basic weight adjustment procedure to be 
followed was according to NeuralWare, Inc 
1991 and is discussed below: 
 
1. Weights in the network are assigned 

randomly; 
2. A random step value is added to each 

weight; 
3. The prediction error is calculated for 

each training sample; 
4. (i) If the total error prediction is less 

than the previous best, the 
current weight values, which 
include the random step, become 
the new set of best weights; 

(ii) The current prediction error is 
stored as the new, “best” 
prediction error; 

5. (i) If the total prediction error is 
greater than the previous best, 
the same random value is 
subtracted from each weight, 
producing a “reversal” step in 
the direction opposite to the 
previous random step; 

(ii) Steps 3 and 4 are repeated; 
(iii) If the reverse step fails to reduce 

the error, a completely different 
vector is added to the best 
weights and the process is 
repeated. 

 
The ANN results of individual parameters 
are tabulated in Table 6. The coefficients of 
each parameter are used as the rating 
weights. As can be seen from this table, UCS 
rating has the highest weight among the 
three which reconfirms the literature review 
finding which indicates that UCS is the most 
important parameter in predicting 
drillability.  

 
 

 
Figure 7: Operation of Processing Element for drillability Index determination 
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Table 6: Weight for individual parameters 
Parameters Weights 
UCS Rating 0.051083 
P-wave Velocity Rating 0.023351 
Density Rating 0.027189 

 
 
Network training and Testing 
 
According to Yu, 2004 a neural network can 
be trained in two kinds of styles i.e., batch 
training and incremental training. In batch 
training, weights and biases of the network 
are only updated after all of the inputs are 
presented to the network, while in 
incremental (on-line) training the network 
parameters are updated each time an input is 
presented to it. After the training process, the 
performance of the trained network should 
be evaluated by applying unseen data to it 
and checking whether its outputs are still 
relevant to the targets. Here, the average 
error rate is used to measure the network 
performance. 
 
CONCLUSION 
 
According to previous research, the most 
influential factors of rock drilling, in terms 
of mechanical properties, physical 
parameters and mass condition of rocks, 
include uniaxial compressive strength, 
density and P-wave velocity. As a result, 
these three parameters were selected to 
develop a Rock Drillability Characterization 
index (RDC index) system. Neural networks 
have been proposed as useful tools in mining 
in a variety of applications. This paper has 
demonstrated that ANN can be applied to 
predict the drillability a rock mass. The 
ANN model will help in cost estimation and 
the planning of the project.  
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