Antimicrobial Potential of Combretum molle Leaf Extracts: Insights from Zambia

  • Joshua Ngwisha Paraclinical Studies Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
  • Bernard Mudenda Hangómbe Paraclinical Studies Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
  • Kennedy Choongo Biomedical Sciences Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
  • James Nyirenda Chemistry Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
  • Roy Mwenechanya Chemistry Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
  • Zombe Kadango Chemistry Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
  • Emmanuel Kabwali Biomedical Sciences Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
  • Ladslav Moonga Biomedical Sciences Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
  • Mulemba Tilika Samutela Biomedical Sciences Department, School of Health Sciences, University of Zambia, Lusaka, Zambia
  • Bruno Stephen July Phiri Paraclinical Studies Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
  • Mbawe Zulu Anatomy Department, School of Medicine, University of Zambia, Lusaka, Zambia
  • Soneni Charlotte Mabhena Paraclinical Studies Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
Keywords: Antimicrobial Resistance, Combretum molle, Natural Antimicrobials, Phytochemical Screening, Bacteria, Ethnomedicine

Abstract

The global rise in antimicrobial resistance (AMR) necessitates innovative solutions. This study investigates the antimicrobial activity and phytochemical composition of Combretum molle, a native Zambian plant, to explore its potential as a cost-effective source for novel antimicrobial agents. Exhaustive extraction using solvents of varying polarities was performed on dried leaf extracts of C. molle. These extracts were tested against a panel of clinically significant gram-negative and gram-positive bacterial isolates and screened for phytochemicals. Phytochemical screening revealed the presence of steroids, terpenoids, phenols, flavonoids, tannins, saponins, alkaloids, and glycosides. Antimicrobial activity was assessed using disk diffusion and broth microdilution techniques, with minimum inhibitory concentrations (MICs) determined through spectrophotometry and spot inoculation. The results revealed substantial antimicrobial activity, with hexane extracts showing the highest efficacy (MIC range: 3.6 to 50.4 mg/ml) and ethanol extracts exhibiting comparable activity to tetracycline (inhibition zones: 6 to 26 mm, P-value < 0.05). These findings highlight the therapeutic potential of C. molle extracts and support their possible integration into ethnomedicine as alternatives to conventional antimicrobials. By tapping into nature's arsenal, this study contributes to the search for effective strategies against multi-drug resistance, offering hope in the fight against AMR.

Author Biographies

Kennedy Choongo, Biomedical Sciences Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.
Emeritus Professor
James Nyirenda, Chemistry Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
Senior Lecturer and Researcher
Roy Mwenechanya, Chemistry Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
Lecturer and Researcher
Mbawe Zulu, Anatomy Department, School of Medicine, University of Zambia, Lusaka, Zambia
Lecturer and Researcher
Soneni Charlotte Mabhena, Paraclinical Studies Department, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
Researcher

References

1. O’neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance Chaired by Jim O’Neill. 2016.
2. Anges MRM, Ames J, Johnson R, O’Bryan IT, Ullerton AEF, Ee L, et al. The New England Journal of Medicine Widespread Distribution of Urinary Tract Infections Caused by a Multidrug-Resistant Escherichia Coli Clonal Group. N Engl J Med. 2001. Available: www.nejm.org
3. Suleiman MM, Mcgaw LJ, Naidoo V, Eloff JN. Detection of Antimicrobial Compounds by Bioautography of Different Extracts of Leaves of Selected South African Tree Species. Afr J Trad CAM. 2010. Available: www.africanethnomedicines.net
4. Marshall BM, Levy SB. Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews. 2011. pp. 718–733. doi:10.1128/CMR.00002-11
5. Gould IM. Antibiotic resistance: the perfect storm. Int J Antimicrob Agents. 2009;34. doi:10.1016/S0924-8579(09)70549-7
6. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial Resistance in ESKAPE Pathogens. 2020. doi:10.1128/CMR
7. Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International. Hindawi Limited; 2016. doi:10.1155/2016/2475067
8. Madrid L, Seale AC, Kohli-Lynch M, Edmond KM, Lawn JE, Heath PT, et al. Infant Group B Streptococcal Disease Incidence and Serotypes Worldwide: Systematic Review and Meta-analyses. Clinical Infectious Diseases. Oxford University Press; 2017. pp. S160–S172. doi:10.1093/cid/cix656
9. Moroi H, Kimura K, Kotani T, Tsuda H, Banno H, Jin W, et al. Isolation of group B Streptococcus with reduced β-lactam susceptibility from pregnant women. Emerg Microbes Infect. 2019;8: 2–7. doi:10.1080/22221751.2018.1557987
10. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology. 2011. pp. 419–426. doi:10.1016/j.Pm.2011.04.005
11. Lupo A, Haenni M, Madec J-Y. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. 2018. doi:10.1128/microbiolspec.ARBA
12. Pitout JDD, Laupland KB. Review Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. 2008. Available: http://infection.thelancet.com
13. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28: 603–661. doi:10.1128/CMR.00134-14
14. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard A-S, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerging Infectious Diseases. Emerg Infect Dis. 2014;20: 1812–1832. doi:10.3201/eid2011.140206ï
15. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews Microbiology. 2007. pp. 939–951. doi:10.1038/nrmicro1789
16. Janda JM, Abbo+ SL. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews. 2010. pp. 35–73. doi:10.1128/CMR.00039-09
17. WHO. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine World Health Organization. 2000; 1–73. Available: http://apps.who.int/iris/bitstream/10665/66783/1/WHO_EDM_TRM_2000.1.pdf (Accessed 09.09.2016)
18. Ojewole JAO. Analgesic and Antiinflammatory Effects of Mollic Acid Glucoside, a 1α α α α α-Hydroxycycloartenoid Saponin Extractive from Combretum molle R. Br. ex G. Don(Combretaceae) Leaf. Phytother Res. 2008;22: 30–35. doi:10.1002/ptr
19. Vambe M. Pharmacological and phytochemical evaluation of seven plants used for microbial-related ailments in South African traditional medicine. PhD Thesis, University of Kwazulu Natal, School of Life Sciences. 2018.
20. Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics. MDPI; 2023. doi:10.3390/antibiotics12020264
21. Harborne. Phytochemicalmethods-Harborne (2). Third. InternaPonal Thompson; 1998.
22. Taponen S, Jantunen A, Pyörälä S Pyörälä. Bovine masPPs caused by coagulase-negative staphylococci: species-level identification of Staphylococcus epidermidis and Staphylococcus chromogenes using PCR. J Dairy Sci. 2017;100: 2391–2398.
23. Agersø Y, Jensen LB., Givskov M. The Strainome of Enterococcus faecalis Isolates from Poultry Flocks: A Better Understanding of the Species Reservoir Leads to a Better Understanding of Transmission to Humans. Antimicrob Agents Chemother . 2019;63.
24. Phiri BSJ, Hang’ombe BM, Mulenga E, Mubanga M, Maurischat S, Wichmann-Schauer H, et al. Prevalence and diversity of Staphylococcus aureus in the Zambian dairy value chain: A public health concern. Int J Food Microbiol. 2022;375. doi:10.1016/j.ijfoodmicro.2022.109737
25. Samutela MT, Phiri BSJ, Simulundu E, Kwenda G, Moonga L, Bwalya EC, et al. Antimicrobial Susceptibility Profiles and Molecular Characterization of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia. Antibiotics. 2022;11.doi:10.3390/anPbioPcs11070844
26. Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information.American Society For Microbiology. 2012; 1–13. Available:https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro
27. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Technical bulletin of the Registry of Medical Technologists. 1966;36: 49–52.
28. Eloff JN. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement Altern Med. 2019;19: 1–8. doi:10.1186/s12906-019-2519-3
29. Ocampo PS, Lázár V, Papp B, Arnoldini M, Zur Wiesch PA, Busa-Fekete R, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014;58: 4573–4582. doi:10.1128/AAC.02463-14
30. Ayoola GA, Coker H, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, et al. Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research. 2008;7. Available: http://www.tjpr.org
31. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4: 685–688. Available: http://www.academicjournals.org/AJB
32. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: A guide for non-statisticians. IntJ Endocrinol Metab. 2012;10: 486–489. doi:10.5812/ijem.3505
33. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Cadernos de Pesquisa. 2017;43: 348–365.
34. CLSI. Performance standards for antimicrobial susceptibility testing. 2018.
35. EUCAST. v_14.0_Breakpoint_Tables_preliminary_231205. EUCAST. 2024;v14.
36. Pieroni A, Cianfaglione K, Nedelcheva A, Hajdari A, Mustafa B, Quave CL. Resilience at the border: Traditional botanical knowledge among Macedonians and Albanians living in Gollobordo, Eastern Albania. J Ethnobiol Ethnomed. 2014;10. doi:10.1186/1746-4269-10-31
37. Veterinary Herbal Medicine and Ethno Pharmacology to Realize One, Health Mission, N.Punniamurthy* MNBN and SKK. Veterinary Herbal Medicine and Ethnopharmacology to Realize One Health Mission -Google Search. [cited 14 Mar 2019]. Available: https://www.google.com/search?rlz=1C1EKKP_enIN810IN810&q=Veterinary+Herbal+Medicine+and+Ethnopharmacology+to+Realize+One+Health+Mission&spell=1&sa=X&ved=0ahUKEwjTicLyroLhAhXYQxUIHaVHDCUQBQgpKAA&biw=1033&bih=620
38. Asres K, Bucar F, Knauder E, Yardley V, Kendrick H, Croƒ SL. In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle. Phytotherapy Research. 2001;15: 613–617. doi:10.1002/ptr.897
39. Nyenje & Ndip. In-vitro antimicrobial activity of crude acetone extract of the stem bark of Combretum molle against selected bacterial pathogens. Journal of Medicinal Plants Research. 2011;5: 5315–5320. Available: http://www.academicjournals.org/JMPR
40. Eloff JN, FamakinJO, Katerere DRP. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. Afr J Biotechnol. 2005;4: 1167–1171. Available: http://www.academicjournals.org/AJB
41. Masoko P, Picard J, Eloff JN. The antifungal activity of twenty-four southern African Combretum species (Combretaceae). South African Journal of Botany. 2007;73: 173–183. doi:10.1016/j.sajb.2006.09.010
42. Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences. 2020;56. doi:10.1590/s2175-97902019000417129
43. Aparecida M, Moreira S, Chartone De Souza ; Edmar, Célia Alencar De Moraes ; Multidrug Efflux Systems in Gram-Negative Bacteria. Brazilian Journal of Microbiology. 2004;35: 19–28.
44. Nikaido H. Antibiotic Resistance Caused by Gram-Negative Multidrug Efflux Pumps. 1998. Available: http://cid.oxfordjournals.org/
45. Ngwisha J, Samutela MT, Zulu M, Mwasinga W, Balakrishnan NMN, Choongo K, et al. In-vitro potential of crude extracts of selected garden herbs for mastitis management in Zambia. University of Zambia Journal of Agricultural and Biomedical Sciences. 2021;5: 49–62. doi:10.53974/unza.jabs.5.1.523
46. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews. Oxford University Press; 2018. pp. 68–80. doi:10.1093/femsre/fux053
47. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science (1979). 2012;337: 1107–1111. doi:10.1126/science.1220761
48. Maia MRG, Marques S, Cabrita ARJ, Wallace RJ, Thompson G, Fonseca AJM, et al. Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: Application to facultative and strictly anaerobic bacteria. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.01381
49. Saha MR, De Sarker D. Ethnoveterinary practices among the tribal community of Malda district of West. Article in Indian Journal of Traditional Knowledge. 2014. Available: https://www.researchgate.net/publicaPon/286163759
50. Quinlan MB, Quinlan RJ. Ethnobiology in one health. Ethnobiology Letters. Society of Ethnobiology; 2016. pp. 59–61. doi:10.14237/ebl.7.1.2016.680
51. Caudell MA, Quinlan MB, Quinlan RJ, Call DR. Medical pluralism and livestock health: Ethnomedical and biomedical veterinary knowledge among East African agropastoralists. J Ethnobiol Ethnomed. 2017;13. doi:10.1186/s13002-017-0135-1
52. Makhafola MA, Middleton L, Olivier MT, Olaokun OO. Cytotoxic and Antibacterial Activity of Selected Medicinal Plants used in South African Traditional Medicine. Asian Journal of Chemistry. 2019;31: 2623–2627. doi:10.14233/ajchem.2019.22240
53. Sadek P. Solvent-Miscibility-and-Viscosity-Chart. The HPLC Solvent Guide 2002.
54. Haynes WM, LDR, & BTJ (Eds. ). Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (95th ed.). 2014.
55. Schinor EC, Salvador MJ, Ito IY, Diones ;, Dias A. Evaluation of the Antimicrobial Activity of Crude Extracts and Isolated Constituents from Chresta Scapigera. Brazilian Journal of Microbiology. 2007;38: 145–149
Published
2025-05-19
How to Cite
1.
Ngwisha J, Hangómbe B, Choongo K, Nyirenda J, Mwenechanya R, Kadango Z, Kabwali E, Moonga L, Samutela M, Phiri B, Zulu M, Mabhena S. Antimicrobial Potential of Combretum molle Leaf Extracts: Insights from Zambia. Journal of Agricultural and Biomedical Sciences [Internet]. 19May2025 [cited 3Aug.2025];8(4). Available from: https://journals.unza.zm/index.php/JABS/article/view/1397
Section
Biomedical Sciences