Performance of Cowpea Progenitor and Hybrids in Varying Concentration Levels of Phosphorus in Hydroponic Setup.
Keywords:
Vigna unguiculata, Hydroponic, Phosphorus, Progenitor, Hybrids
Abstract
Among abiotic factors limiting cowpea productivity, phosphorus (P) is an important element. However, in Zambia, no study has determined optimal soil P concentrations for the available cowpea germplasm. The objectives of this study were (i) to identify cowpea genotype that performs better in different concentration levels of phosphorus in hydroponic setups, and ii) to determine the phenotypic response of agronomic variables in different concentration levels of phosphorus. The experiment was set up as 4 x 10 completely randomized design (CRD) replicated 3 times, with 4 doses of P, thus, 0mg/L, 4.7mg/L, 9.3mg/L and 13.95mg/L in nutrient medium and ten genotypes (G). Genotype LT BT1h was identified as a better performer across P concentration. Further exploration of G x P interaction main effects revealed that genotype LT BT1 h performed better than the progenitor in all doses of P concentration except in a medium with 9.3mg/L and 13.95mg/L. Overall, the results showed that applying a concentration above 9.3mg/L P impeded seedling productivity. Significant better performances were obtained with shoot biomass, plant biomass and shoot length of measured variables, implying that the identified variables in varying levels of P concentration can initially be used to aid in selecting for high performing genotypes. The identified novel and best-performing cowpea hybrids for economic traits be recommended for further evaluation.References
1. Chikalipa, E. 2023. Genetic analysis of cowpea (Vigna unguiculata L. WALP) agronomic variables in phosphorus limiting soil (MSc dissertation, The University of Zambia).
2. Chikalipa, E., Mwala, M., Tembo L. 2022. Evaluation of cowpea parents and hybrids through multivariate analysis under phosphorus limited soil. Journal of Genetics, Genomics & Plant Breeding;6(4):102-110.
3. Chikalipa, E., Tembo, L. 2023. Analysis of Parent Offspring Regression of Selected Cowpea (Vigna unguiculata [L]. Walp.) Agronomic Traits in Phosphorus Limiting Soil. International Journal of Plant and Soil Science, 35(19), 1488-1494.
4. Gerrano, A,S., van Rensburg, S,W, J., Adebola ,O, P. 2017. Preliminary evaluation of seed and germination traits in cowpea (Vigna unguiculata) genotypes. South African Journal of Plant and Soil, 34(5):399-402.
5. Horn, L,N., Shimelis, H., Laing, M. 2015. Participatory appraisal of production constraints, preferred traits and farming system of cowpea in the northern Namibia: implications for breeding. Legume Research – An International Journal;38:691–700.
6. Hosier, S., Brandley, L. 1999. Guide to symptoms and plant deficiencies. The University of Arizona, Cooperative extension, USA.
7. Kerridge, P, C., Kronstad,W,E. 1968. Evidence of genetic resistance of genetic resistance to aluminum toxicity (Trichum aestivum Vill, Host). Agronomy Journal 60 (6):710–1. doi: 10.2134/agronj1968. 00021962006000060041x.
8. Lima, E, R., Santiago,A,S., Araujo, A,P., Teixeira, M,G. 2005. Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Brazilian Journal of Plant Physiology 17 (3):273–81. doi: 10.1590/S1677-04202005000300001.
9. Macintosh, K, A., Doody, D,G., Withers, P,J., McDowell, A, R, W., Smith, D, R., Johnson, L, T., Bruulsema, T, W., O’Flaherty, V., McGrath, J, W. 2019. Transforming soil phosphorus fertility management strategies to sup- port the delivery of multiple ecosystem services from agricultural systems. The Science of the Total Environment 649:90–8. doi: 10.1016/j.scitotenv.2018.08.272.
10. Mandal, S. M., Chakraborty, D., Gupta, K. 2008. Seed size variation: Influence on germination and subsequent seedling performance in Hyptis suaveolens (Lamiaceae). Research Journal of Seed Science 1(1):26–33. doi: 10. 3923/rjss.2008.26.33.
11. Manschadi, A. M., Hans-Peter,K.,Vollman, J., Eitzinger, J., Wenzel, W. 2014. Developing phosphorus-efficient crop varieties: An interdisciplinary research framework. Field Crops Research 162:87–98. doi: 10.1016/j.fcr.2013. 12.016.
12. Schneider, K, D., Thiessen Martens, J. R., Zvomuya,F., Reid, D, K., Fraser, T, D, Lynch, D, H., O’Halloran, I, P., Wilson, H., F. 2019. Options for improved phosphorus cycling and use in Agriculture at the field and regional scales. Journal of Environmental Quality 48 (5):1247–64. doi: 10.2134/jeq2019.02.0070.
13. Singh, B, B., Ehlers, J,D., Sharma, B., Freire, F, R. 2002. Recent progress in cowpea breeding. In: Fatokun, C.A., S.A. Tarawali, B.B. Singh, P.M. Kormawa, and M. Tamò (eds.), Challenges and opportunities for enhancing sustainable cowpea production.Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria p. 22- 40.
14. Tarawali, B, B., Singh, P,M., Kormawa, M., Tamò, M. 2002. Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria pp. 301-318.
15. Tembo, L., Asea,G., Gibson, P, T., Okori, P. 2016. Indirect selection for resistance to Stenocarpella maydis and Fusarium graminearum and the prospects of selecting for high yielding and resistant maize hybrids. Plant Breeding 135 (4):446–51. doi: 10.1111/pbr.12378.
16. Tembo, L., Munyinda, K. 2015. Clustering bean mutants based on heterotic grouping. African Crop Science Journal 1:1–7.
17. Tembo, L., Pungulani, L., Sohati, P, H., Mataa, M., Munyinda, K. 2017. Resistance to Callosobruchus maculatus developed via gamma radiation in cowpea. Journal of Agriculture and Crops 3:65–71.
18. Trankner, M., Travakol, E., Jakli, B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163:414–31.
19. Vance, C, P., Uhde‐Stone, C., Allan, D, L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New phytologist, 157(3), 423-447.
20. White P, J., Brown, P, H. 2010. Plant nutrition for sustainable development and global health: Annals of Botany;105(7): 1073-1080.
21. Schachtman, D, P., Reid, R. J., Ayling, S. M. 1998. Phosphorus uptake by plants: from soil to cell. Plant physiology, 116(2), 447-453.
2. Chikalipa, E., Mwala, M., Tembo L. 2022. Evaluation of cowpea parents and hybrids through multivariate analysis under phosphorus limited soil. Journal of Genetics, Genomics & Plant Breeding;6(4):102-110.
3. Chikalipa, E., Tembo, L. 2023. Analysis of Parent Offspring Regression of Selected Cowpea (Vigna unguiculata [L]. Walp.) Agronomic Traits in Phosphorus Limiting Soil. International Journal of Plant and Soil Science, 35(19), 1488-1494.
4. Gerrano, A,S., van Rensburg, S,W, J., Adebola ,O, P. 2017. Preliminary evaluation of seed and germination traits in cowpea (Vigna unguiculata) genotypes. South African Journal of Plant and Soil, 34(5):399-402.
5. Horn, L,N., Shimelis, H., Laing, M. 2015. Participatory appraisal of production constraints, preferred traits and farming system of cowpea in the northern Namibia: implications for breeding. Legume Research – An International Journal;38:691–700.
6. Hosier, S., Brandley, L. 1999. Guide to symptoms and plant deficiencies. The University of Arizona, Cooperative extension, USA.
7. Kerridge, P, C., Kronstad,W,E. 1968. Evidence of genetic resistance of genetic resistance to aluminum toxicity (Trichum aestivum Vill, Host). Agronomy Journal 60 (6):710–1. doi: 10.2134/agronj1968. 00021962006000060041x.
8. Lima, E, R., Santiago,A,S., Araujo, A,P., Teixeira, M,G. 2005. Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Brazilian Journal of Plant Physiology 17 (3):273–81. doi: 10.1590/S1677-04202005000300001.
9. Macintosh, K, A., Doody, D,G., Withers, P,J., McDowell, A, R, W., Smith, D, R., Johnson, L, T., Bruulsema, T, W., O’Flaherty, V., McGrath, J, W. 2019. Transforming soil phosphorus fertility management strategies to sup- port the delivery of multiple ecosystem services from agricultural systems. The Science of the Total Environment 649:90–8. doi: 10.1016/j.scitotenv.2018.08.272.
10. Mandal, S. M., Chakraborty, D., Gupta, K. 2008. Seed size variation: Influence on germination and subsequent seedling performance in Hyptis suaveolens (Lamiaceae). Research Journal of Seed Science 1(1):26–33. doi: 10. 3923/rjss.2008.26.33.
11. Manschadi, A. M., Hans-Peter,K.,Vollman, J., Eitzinger, J., Wenzel, W. 2014. Developing phosphorus-efficient crop varieties: An interdisciplinary research framework. Field Crops Research 162:87–98. doi: 10.1016/j.fcr.2013. 12.016.
12. Schneider, K, D., Thiessen Martens, J. R., Zvomuya,F., Reid, D, K., Fraser, T, D, Lynch, D, H., O’Halloran, I, P., Wilson, H., F. 2019. Options for improved phosphorus cycling and use in Agriculture at the field and regional scales. Journal of Environmental Quality 48 (5):1247–64. doi: 10.2134/jeq2019.02.0070.
13. Singh, B, B., Ehlers, J,D., Sharma, B., Freire, F, R. 2002. Recent progress in cowpea breeding. In: Fatokun, C.A., S.A. Tarawali, B.B. Singh, P.M. Kormawa, and M. Tamò (eds.), Challenges and opportunities for enhancing sustainable cowpea production.Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria p. 22- 40.
14. Tarawali, B, B., Singh, P,M., Kormawa, M., Tamò, M. 2002. Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria pp. 301-318.
15. Tembo, L., Asea,G., Gibson, P, T., Okori, P. 2016. Indirect selection for resistance to Stenocarpella maydis and Fusarium graminearum and the prospects of selecting for high yielding and resistant maize hybrids. Plant Breeding 135 (4):446–51. doi: 10.1111/pbr.12378.
16. Tembo, L., Munyinda, K. 2015. Clustering bean mutants based on heterotic grouping. African Crop Science Journal 1:1–7.
17. Tembo, L., Pungulani, L., Sohati, P, H., Mataa, M., Munyinda, K. 2017. Resistance to Callosobruchus maculatus developed via gamma radiation in cowpea. Journal of Agriculture and Crops 3:65–71.
18. Trankner, M., Travakol, E., Jakli, B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163:414–31.
19. Vance, C, P., Uhde‐Stone, C., Allan, D, L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New phytologist, 157(3), 423-447.
20. White P, J., Brown, P, H. 2010. Plant nutrition for sustainable development and global health: Annals of Botany;105(7): 1073-1080.
21. Schachtman, D, P., Reid, R. J., Ayling, S. M. 1998. Phosphorus uptake by plants: from soil to cell. Plant physiology, 116(2), 447-453.
Published
2025-06-07
How to Cite
1.
Chikalipa E. Performance of Cowpea Progenitor and Hybrids in Varying Concentration Levels of Phosphorus in Hydroponic Setup. Journal of Agricultural and Biomedical Sciences [Internet]. 7Jun.2025 [cited 26Jul.2025];9(2). Available from: https://journals.unza.zm/index.php/JABS/article/view/1399
Section
Agriculture Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: ©️ JABS. Articles in this journal are distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.