Sweet but Toxic: Organophosphate Pesticide Residues in Nigerian Honey as an Emerging Threat to Food Safety and Agriculture
Keywords:
Honey, Pesticides, Nutritional Analysis, Purity, MRLs
Abstract
Honey, despite its nutritional and therapeutic properties, can pose significant risks to environmental health and food safety due to the presence of contaminants. This study investigated the occurrence of organophosphate pesticide residues in honey samples collected from hard-to-reach apiaries in Nigeria and examined the relationship between these residues, honey purity, and nutritional composition. Multiple organophosphate residues were detected using Gas Chromatography–Mass Spectrometry, with dimethoate and merphor being the most prevalent. Although all detected concentrations were below the maximum residue limits (MRLs) set by the European Food Safety Authority (EFSA), some values, particularly dimethoate from Imosan, approached the regulatory thresholds. Nutritional analysis revealed that the protein, moisture, ash, and sugar contents of the honey samples generally fell within international quality standards. Statistical correlations indicated strong associations between honey purity and pesticide residues, as well as with moisture and dry matter content. This study underscores the need for continuous monitoring of pesticide residues in apicultural products and highlights potential implications for food safety and public health.References
1. Abay, Z., A. Bezabeh, A. Gela, Tassew, E. “Evaluating the impact of commonly used pesticides on honeybees (Apis mellifera) in North Gonder of Amhara Region, Ethiopia.” Journal of Toxicology, 2023;1: 2634158. https://doi/full/10.1155/2023/2634158.
2. Adenekan, M. O., Amusa, N. A., Okpeze, V. E., Owosibo, A. O. Nutritional and microbiological components of honey samples obtained from Ogun State, Southwestern Nigeria. European Journal of Sustainable Development, 2012; 1(2): 271-286. https://doi.org/10.14207/ejsd.2012.v1n2p271
3. Adeniyi, K. A., Daudu, O. A. Y., Abubakar, A., Ismail, A. D., Busari, M. B., Abdulsalami, H., Oyibo-Usman, K. A. Comparative Analysis of the Proximate and Nutritional Compositions of Nigerian Bitter and Sweet Honey from Apis mellifera. International Journal of Scientific and Research Publications, 2014; 4(11):1-4.
http://www.ijsrp.org/research-paper-1114.php?rp=P353340
4. Ahed A., Khalid M. S. Physico-Chemical Properties of Multi-Floral Honey from the West Bank, Palestine. International Journal of Food Properties, 2017; 20(2):447-454.
https://doi.org/10.1080/10942912.2016.1166128
5. Al Alam, J., Fajloun, Z., Chabni, A., Millet, M. The use of honey as environmental biomonitor of pesticides contamination in northern Lebanon. Euro-Mediterranean Journal for Environmental Integration, 2017; 2: 1-7. https://doi.org/10.1007/s41207-017-0034-9
6. Al-Juhaimi, F. Y., Ozcan, M. M., Mohamed Ahmed, I. A., Alsawmahia, O. N., Ozcan, M. M., Ghafoor, K., Babiker, E. E. Bioactive compounds, antioxidant activity, fatty acid composition, and antimicrobial activity of propolis from different locations in Turkey. Journal of Apicultural Research, 2022; 61: 246–254. https://doi.org/10.1080/00218839.2021.1898785
7. Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., Battino, M. Contribution of honey in nutrition and human health: a review. Mediterranean Journal of Nutrition and Metabolism, 2010; 3: 15-23. https://doi.org/10.1007/s12349-009-0051-6
8. Anikwe, J. C., Akinwande, K.L., Adeonipekun, P. A. and Makanjuola, W. A. Hive management of honeybee, Apis mellifera adansonii Latreille and mellisopalynological and proximate analyses of honey samples from agrarian regions of Lagos State, Nigeria. FUTA Journal of Research in Sciences, 2016; 12 (1): 94-106.
https://ir.unilag.edu.ng/handle/123456789/4801
9. Azeredo, L., Azeredo, M. A. A., De Souza, S. R. and Dutra, V. M. L. Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chemistry, 2003; 80(2): 249-254. https://doi.org/10.1016/S0308-8146(02)00261-3
10. Bakour, M., Laaroussi, H., El Menyiy, N., Elaraj, T., El Ghouizi, A., Lyoussi, B. The Beekeeping State and Inventory of Mellifero-Medicinal Plants in the North-Central of Morocco. The Scientific World Journal, 2021; (1): 9039726. https://doi.org/10.1155/2021/9039726
11. Balayiannis, G., Balayiannis, P. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Archives of Environmental Contamination and Toxicology, 2008; 55(3):462e470. https://doi.org/10.1007/s00244-007-9126-x
12. Barganska, Z., S_lebioda, M., Namie snik, J. Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control, 2013; 31(1): 196e201. https://doi.org/10.1016/j.foodcont.2012.09.049
13. Baša Česnik, H., Kmecl, V., Velikonja Bolta, Š. Pesticide and veterinary drug residues in honey-validation of methods and a survey of organic and conventional honeys from Slovenia. Food Additives Contaminants: Part A, 2019; 36(9): 1358-1375. https://doi.org/10.1080/19440049.2019.1631492
14. Beekman, M., Ratnieks, F. L. W. Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, 2000; 14(4): 490-496. https://doi.org/10.1046/j.1365-2435.2000.00443.x.
15. Blasco, C., Fernandez, M., Pena, A., Lino, C., Silveira, M. I., Font, G., et al. (2003). Assessment of pesticide residues in honey samples from Portugal and Spain. Journal of Agricultural and Food Chemistry, 51(27), 8132e8138. https://doi.org/10.1021/jf034870m
16. Bogdanov, S. Contaminants of bee products. Apidologie, 2006; 37(1): 1-18. https://doi.org/10.1051/apido:2005043
17. Bogdanov, S., 2009. Honey composition. The honey book. 1-10.
18. Boussaid A., Chouaibia M., Rezigb L., Hellalc R., Donsìa F., Ferraria G. et al. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arabian Journal of Chemistry, 2018; 11(2):265-274. https://doi.org/10.1016/j.arabjc.2014.08.011
19. Buba F., Gidado A. and Shugaba A. Analysis of Biochemical Composition of Honey Samples from North-East Nigeria. Biochemistry and Analytical Biochemistry, 2013; 2(3):1-7. https://doi.org/10.4172/2161-1009.1000139
20. Calatayud-Vernich, P., Calatayud, F., Simó, E., Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 2018; 241: 106-114. https://doi.org/10.1016/j.envpol.2018.05.062
21. Calatayud-Vernich, P., Calatayud, F., Simó, E., Suarez-Varela, M. M., Picó, Y. Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Science of the Total Environment, 2016; 541: 33-41. https://doi.org/10.1016/j.scitotenv.2015.08.131
22. Carneiro, L. S., Martinez, L. C., De Oliveira, A. H., Cossolin, J. F. S., De Resende, M. T. et al. Acute oral exposure to imidacloprid induces apoptosis and autophagy in the midgut of honey bee Apis mellifera workers. Science of the Total Environment, 2022; 815,152847.https://doi.org/10.1016/j.scitotenv.2021.152847.
23. Choudhary, A., Sharma, D. C. Pesticide residues in honey samples from Himachal Pradesh (India). Bulletin of Environmental Contamination and Toxicology, 2008; 80(5), 417-422. https://doi.org/10.1007/s00128-008-9426-5
24. Codex Alimentarius Commission: Draft revised standard for honey (at step 10 of the codex procedure). Codex Alimentarius Commission, Food and Agricultural Organization (FAO), Rome, 2001; 25:19-26.
25. Colin, M. E., Bonmatin, J. M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J. P. (2004). A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Archives of Environmental Contamination and Toxicology, 2004; 47:(3), 387e395. https://doi.org/10.1007/s00244-004-3052-y
26. Colin, M. E., J. M. Bonmatin, I. Moineau, C. Gaimon, S. Brun, and J. P. Vermandere. “A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides.” Archives of environmental contamination and toxicology, 2004;47: 387-395. https://doi.org/10.1007/s00244-004-3052-y.
27. Daily Post. (2023). Concerns as Nigeria records over 200,000 deaths annually from food poisoning. Retrieved from https://dailypost.ng/2023/12/17/concerns-as-nigeria-records-over-200000-deaths-annually-fromfood-poisoning/. Accessed February 28, 2025.
28. Damto, T. A review on effect of adulteration on honey properties. 2019. Available at SSRN 3359494. http://dx.doi.org/10.2139/ssrn.3359494
29. Daniele, G., Giroud, B., Jabot, C., Vulliet, E. Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environmental Science and Pollution Research, 2018; 25: 6145-6153. https://doi.org/10.1007/s11356-017-9227-7
30. El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F.,et al. Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodulatory properties. Frontiers in Nutrition, 2022; 8: Article 761267. https://doi.org/10.3389/fnut.2021.761267
31. EU. (2002). COUNCIL DIRECTIVE 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities, 47–52.
32. Fasasi, K. A., Awodiran, O. F., Ayeni, D. J., Awoniyi, O. I., Awojide, S. H. Assessment of Bee Honey in some Districts in South-Western Nigeria for Agricultural Pesticide Residues and Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Agricultural Sciences–Sri Lanka, 2024; 19(1). https://doi.org/10.4038/jas.v19i1.9825
33. Giampieri, F., Quiles, J. L., Cianciosi, D., Forbes-Hernández, T. Y., Orantes-Bermejo, F. J., Alvarez-Suarez, J. M., Baono, M. Bee products: An emblematic example of underutilized sources of bioactive compounds. Journal of agricultural and food chemistry, 2022; 70(23): 6833-6848. https://doi.org/10.1021/acs.jafc.1c05822
34. Gulfraz M., Ixikhar F., Imran M., Zeenat A., Asif S., Shah I. Compositional Analysis and Antimicrobial Activity of Various Honey Types of Pakistan. International Journal of Food Science and Technology, 2011; 46(2):263-267. https://doi.org/10.1111/j.1365-2621.2010.02488.x
35. Hashemirad, F. S., Behfar, M., Kavoosi, G. Proximate composition, physico-chemical, techno-functional, amino acid profile, fatty acid profile, nutritional quality, antioxidant, anti-amylase and anti-lipase properties of bee bread, royal jelly, and bee propolis. LWT, 2024; 200:116190. https://doi.org/10.1016/j.lwt.2024.116190
36. Jin, Z., Lin, Z., Chen, M., Ma, Y., Tan, J., Fan, Y., ... Tu, F. Determination of multiple pesticide residues in honey using gas chromatography-electron impact ionization-mass spectrometry. Chinese journal of chromatography, 2006; 24(5): 440-447. https://doi.org/10.1016/S1872-2059(06)60019-9
37. Khalil, M. I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, M. A., Islam, M. N., ... Gan, S. H. Physicochemical and antioxidant properties of Algerian honey. Molecules, 2012; 17(9): 11199-11215. https://doi.org/10.3390/molecules170911199
38. Lekduhur, G. J., Onuwa, P. O., Eneji, I. S., Rufus, S. A. Analysis of selected pesticide residues and heavy metals in honey obtained from Plateau State, Nigeria. Journal of Analytical Sciences, Methods and Instrumentation, 2021;11(1):1-13. https://doi.org/10.4236/jasmi.2021.111001
39. Liew, K. Y., Kamise, N. I., Ong, H. M., Aw Yong, P. Y., Islam, F., Tan, J. W., Tham, C. L. Anti-allergic properties of propolis: Evidence from preclinical and clinical studies. Frontiers in Pharmacology, 2022; 12: Article 785371. https://doi.org/10.3389/fphar.2021.785371
40. Ligor, M., Bukowska, M., Ratiu, I. A., Gadzała-Kopciuch, R., Buszewski, B. Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules, 2020; 25(24): 5817. https://doi.org/10.3390/molecules25245817
41. Malhat, F., Nasr, I. Monitoring of organophosphorus pesticide residues in water from the Nile River Tributaries, Egypt. Nature, 2013;1(1): 1-4. DOI:10.12691/ajwr-1-1-1
42. Manzanares, A. B., García, Z. H., Galdón, B. R., Rodríguez, E. R., Romero, C. D. Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 2011;126(2): 664-672. https://doi.org/10.1016/j.foodchem.2010.11.003
43. Martinello, M., Manzinello, C., Dainese, N., Giuliato, I., Gallina, A., Mutinelli, F. (2021). The honey bee: An active biosampler of environmental pollution and a possible warning biomarker for human health. Applied Sciences, 2021;11(14): 6481. https://doi.org/10.3390/app11146481
44. Molan, P., Betts, J. A. (2004). Clinical usage of honey as a wound dressing: an update. Journal of wound care, 2004;13(9); 353-356. htps://doi.org/10.12968/jowc.2004.13.9.26708
45. Murcia-Morales, M., Heinzen, H., Parrilla-Vázquez, P., del Mar Gómez-Ramos, M., Fernández-Alba, A. R. Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC Trends in Analytical Chemistry, 2022; 146: 116506. https://doi.org/10.1016/j.trac.2021.116506
46. Nainu, F., Masyita, A., Bahar, M. A., Raihan, M., Prova, S. R., Mitra, S., … SimalGandara, J. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics, 2021;10: 822–830. https://doi.org/10.3390/antibiotics10070822
47. Nayar J., Shobhan K. Kiran K. C. Physicochemical Analysis of some Commercial Honey Samples from Telangana, Indian Journal of Nutrition, 2017; 4(1):01-04.
48. Okeola, F. O., Afolabi, B. T., Liadi, M. T., Apo, G. S. Comparative study of Physico-Chemical properties of pure honey harvested from Jatropha curcas plantation and honey fortified with Moringa and Ginger. International Journal of Phytofuels and Allied Sciences, 2015;4(1): 81-92.
49. Omafuvbe, B. O., Akanbi, O. O. Microbiological and physico-chemical properties of some commercial Nigerian honey. African Journal of Microbiology Research, 2009; 3(12): 891-896. https://doi.org/10.5897/AJMR.9000494
50. Oyeyemi SD., Kayode J. and Owolabi MO. Comparative Nutritional Studies on Honey Samples in Ado Ekiti, Ekiti State, Nigeria. Donnish Journal of Medicinal Plant Research 2015;2(2):16-20.
51. Oyinloye, J. A., Oyekunle, J. A. O., Ogunfowokan, A. O., Msagati, T., Adekunle, A. S., Nety, S. S. (2021). Human health risk assessments of organochlorine pesticides in some food crops from Esa-Oke farm settlement, Osun State, Nigeria. Heliyon, 7(7). https://doi.org/10.1016/j.heliyon.2021.e07470
52. Pickova J. Importance of Knowledge on Lipid Composition of Foods to Support Development towards Consumption of Higher Levels of n-3 Fatty Acids via Freshwater Fish. Physiol. Res. 2009; 58(1):39-45.
53. Pirard, C., Widart, J., Nguyen, B. K., Deleuze, C., Heudt, L., Haubruge, E., ... Focant, J. F. Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007;1152(1-2): 116-123. https://doi.org/10.1016/j.chroma.2007.03.035
54. Porrini, C., Sabatini, A. G., Girotti, S., Ghini, S., Medrzycki, P., Grillenzoni, F., ... Celli, G. Honey bees and bee products as monitors of the environmental contamination. Apiacta, 2003; 38(1): 63-70.
55. Quality and Standards Authority of Ethiopia. (2005). Honey specification: Ethiopian standard (ES 1202). Quality and Standards Authority of Ethiopia.
56. Rissato, S. R., Galhiane, M. S., de Almeida, M. V., Gerenuo, M., Apon, B. M.. Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food chemistry, 2007; 101(4): 1719-1726. https://doi.org/10.1016/j.foodchem.2005.10.034
57. Saad, M. A., Abd-Ella, A. A., Abdu-Allah, G. A., Ezz El-Din, H. E. D. A., Mahmoud, H. A., Ahmed, A. M. Toxicological Impact of Certain Pesticides on Honeybee, Apis melliferea L. (Hymenoptera: Apidae) under Iaboratory Conditions. Assiut Journal of Agricultural Sciences, 2023; 54(3): 65-77. https://doi.org/10.21608/ajas.2023.212231.1257.
58. Saxena S., Gautam S. and Sharma A. (2010): Physical, Biochemical, and Antioxidant Properties of Some Indian Honeys. Food Chemistry 2010; 118(2):391-397. https://doi.org/10.1016/j.foodchem.2009.05.001
59. Tavares, D. A., Dussaubat, C., Kretzschmar, A., Carvalho, S. M., Silva-Zacarin, E. C., Malaspina, O., ... Belzunces, L. P. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental pollution, 2017; 229: 386-393. https://doi.org/10.1016/j.envpol.2017.05.092.
60. Tesi, G. O., Felagha, I., Ogbuta, A. A., Ogbomade, W. E., Obodoka, G. C., Iniaghe, P. O., Kpomah, E. D. Levels of endocrine disrupting organochlorine pesticides in herbal medicines from Bayelsa State, Nigeria: Any threat to public health? Toxicology and Environmental Health Sciences, 2024;16(4): 595-606. https://doi.org/10.1007/s13530-024-00237-5
61. Tison, L., Franc, C., Burkart, L., Jactel, H., Monceau, K., de Revel, G., Thiéry, D. Pesticide contamination in an intensive insect predator of honey bees. Environment International 2023; 176: 107975. https://doi.org/10.1016/j.envint.2023.107975.
62. Toma, I., Jefferson, J., Clifford, L., Mofio, B. Assessment of heavy metals and pesticide residues in honey samples collected from selected villages in five local government areas of adamawa state, Nigeria. Int. J. Sci.Res. Publ, 2020; 10(9): 383-392. https://dx.doi.org/10.29322/ijsrp.10.09.2020.p10547
63. Tosi, S., Burgio, G., Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific reports, 2017;7(1):1201. https://doi.org/10.1038/s41598-017-01361-8.
64. Wiest, L., Buleté, A., Giroud, B., Fratta, C., Amic, S., Lambert, O et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 2011;1218(34):5743-5756. https://doi.org/10.1016/j.chroma.2011.06.079
65. Xiao, J., He, Q., Liu, Q., Wang, Z., Yin, F., Chai, Y., et al. x. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Science of The Total Environment, 2013; 805:150292. https://doi.org/10.1016/j.scitotenv.2021.150292.
66. Zhang, H., Zhu, X., Huang, Q., Zhang, L., Liu, X., Liu, R., et al. Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatographyquadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chemistry, 2023; 409: Article 135342. https://doi.org/10.1016/j.foodchem.2022.135342
67. Zioga, E., Kelly, R., White, B., Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environmental research, 2020;189:109873. https://doi.org/10.1016/j.envres.2020.109873
2. Adenekan, M. O., Amusa, N. A., Okpeze, V. E., Owosibo, A. O. Nutritional and microbiological components of honey samples obtained from Ogun State, Southwestern Nigeria. European Journal of Sustainable Development, 2012; 1(2): 271-286. https://doi.org/10.14207/ejsd.2012.v1n2p271
3. Adeniyi, K. A., Daudu, O. A. Y., Abubakar, A., Ismail, A. D., Busari, M. B., Abdulsalami, H., Oyibo-Usman, K. A. Comparative Analysis of the Proximate and Nutritional Compositions of Nigerian Bitter and Sweet Honey from Apis mellifera. International Journal of Scientific and Research Publications, 2014; 4(11):1-4.
http://www.ijsrp.org/research-paper-1114.php?rp=P353340
4. Ahed A., Khalid M. S. Physico-Chemical Properties of Multi-Floral Honey from the West Bank, Palestine. International Journal of Food Properties, 2017; 20(2):447-454.
https://doi.org/10.1080/10942912.2016.1166128
5. Al Alam, J., Fajloun, Z., Chabni, A., Millet, M. The use of honey as environmental biomonitor of pesticides contamination in northern Lebanon. Euro-Mediterranean Journal for Environmental Integration, 2017; 2: 1-7. https://doi.org/10.1007/s41207-017-0034-9
6. Al-Juhaimi, F. Y., Ozcan, M. M., Mohamed Ahmed, I. A., Alsawmahia, O. N., Ozcan, M. M., Ghafoor, K., Babiker, E. E. Bioactive compounds, antioxidant activity, fatty acid composition, and antimicrobial activity of propolis from different locations in Turkey. Journal of Apicultural Research, 2022; 61: 246–254. https://doi.org/10.1080/00218839.2021.1898785
7. Alvarez-Suarez, J. M., Tulipani, S., Romandini, S., Bertoli, E., Battino, M. Contribution of honey in nutrition and human health: a review. Mediterranean Journal of Nutrition and Metabolism, 2010; 3: 15-23. https://doi.org/10.1007/s12349-009-0051-6
8. Anikwe, J. C., Akinwande, K.L., Adeonipekun, P. A. and Makanjuola, W. A. Hive management of honeybee, Apis mellifera adansonii Latreille and mellisopalynological and proximate analyses of honey samples from agrarian regions of Lagos State, Nigeria. FUTA Journal of Research in Sciences, 2016; 12 (1): 94-106.
https://ir.unilag.edu.ng/handle/123456789/4801
9. Azeredo, L., Azeredo, M. A. A., De Souza, S. R. and Dutra, V. M. L. Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chemistry, 2003; 80(2): 249-254. https://doi.org/10.1016/S0308-8146(02)00261-3
10. Bakour, M., Laaroussi, H., El Menyiy, N., Elaraj, T., El Ghouizi, A., Lyoussi, B. The Beekeeping State and Inventory of Mellifero-Medicinal Plants in the North-Central of Morocco. The Scientific World Journal, 2021; (1): 9039726. https://doi.org/10.1155/2021/9039726
11. Balayiannis, G., Balayiannis, P. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Archives of Environmental Contamination and Toxicology, 2008; 55(3):462e470. https://doi.org/10.1007/s00244-007-9126-x
12. Barganska, Z., S_lebioda, M., Namie snik, J. Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control, 2013; 31(1): 196e201. https://doi.org/10.1016/j.foodcont.2012.09.049
13. Baša Česnik, H., Kmecl, V., Velikonja Bolta, Š. Pesticide and veterinary drug residues in honey-validation of methods and a survey of organic and conventional honeys from Slovenia. Food Additives Contaminants: Part A, 2019; 36(9): 1358-1375. https://doi.org/10.1080/19440049.2019.1631492
14. Beekman, M., Ratnieks, F. L. W. Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, 2000; 14(4): 490-496. https://doi.org/10.1046/j.1365-2435.2000.00443.x.
15. Blasco, C., Fernandez, M., Pena, A., Lino, C., Silveira, M. I., Font, G., et al. (2003). Assessment of pesticide residues in honey samples from Portugal and Spain. Journal of Agricultural and Food Chemistry, 51(27), 8132e8138. https://doi.org/10.1021/jf034870m
16. Bogdanov, S. Contaminants of bee products. Apidologie, 2006; 37(1): 1-18. https://doi.org/10.1051/apido:2005043
17. Bogdanov, S., 2009. Honey composition. The honey book. 1-10.
18. Boussaid A., Chouaibia M., Rezigb L., Hellalc R., Donsìa F., Ferraria G. et al. Physicochemical and Bioactive Properties of Six Honey Samples from Various Floral Origins from Tunisia. Arabian Journal of Chemistry, 2018; 11(2):265-274. https://doi.org/10.1016/j.arabjc.2014.08.011
19. Buba F., Gidado A. and Shugaba A. Analysis of Biochemical Composition of Honey Samples from North-East Nigeria. Biochemistry and Analytical Biochemistry, 2013; 2(3):1-7. https://doi.org/10.4172/2161-1009.1000139
20. Calatayud-Vernich, P., Calatayud, F., Simó, E., Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 2018; 241: 106-114. https://doi.org/10.1016/j.envpol.2018.05.062
21. Calatayud-Vernich, P., Calatayud, F., Simó, E., Suarez-Varela, M. M., Picó, Y. Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Science of the Total Environment, 2016; 541: 33-41. https://doi.org/10.1016/j.scitotenv.2015.08.131
22. Carneiro, L. S., Martinez, L. C., De Oliveira, A. H., Cossolin, J. F. S., De Resende, M. T. et al. Acute oral exposure to imidacloprid induces apoptosis and autophagy in the midgut of honey bee Apis mellifera workers. Science of the Total Environment, 2022; 815,152847.https://doi.org/10.1016/j.scitotenv.2021.152847.
23. Choudhary, A., Sharma, D. C. Pesticide residues in honey samples from Himachal Pradesh (India). Bulletin of Environmental Contamination and Toxicology, 2008; 80(5), 417-422. https://doi.org/10.1007/s00128-008-9426-5
24. Codex Alimentarius Commission: Draft revised standard for honey (at step 10 of the codex procedure). Codex Alimentarius Commission, Food and Agricultural Organization (FAO), Rome, 2001; 25:19-26.
25. Colin, M. E., Bonmatin, J. M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J. P. (2004). A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Archives of Environmental Contamination and Toxicology, 2004; 47:(3), 387e395. https://doi.org/10.1007/s00244-004-3052-y
26. Colin, M. E., J. M. Bonmatin, I. Moineau, C. Gaimon, S. Brun, and J. P. Vermandere. “A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides.” Archives of environmental contamination and toxicology, 2004;47: 387-395. https://doi.org/10.1007/s00244-004-3052-y.
27. Daily Post. (2023). Concerns as Nigeria records over 200,000 deaths annually from food poisoning. Retrieved from https://dailypost.ng/2023/12/17/concerns-as-nigeria-records-over-200000-deaths-annually-fromfood-poisoning/. Accessed February 28, 2025.
28. Damto, T. A review on effect of adulteration on honey properties. 2019. Available at SSRN 3359494. http://dx.doi.org/10.2139/ssrn.3359494
29. Daniele, G., Giroud, B., Jabot, C., Vulliet, E. Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environmental Science and Pollution Research, 2018; 25: 6145-6153. https://doi.org/10.1007/s11356-017-9227-7
30. El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F.,et al. Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodulatory properties. Frontiers in Nutrition, 2022; 8: Article 761267. https://doi.org/10.3389/fnut.2021.761267
31. EU. (2002). COUNCIL DIRECTIVE 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities, 47–52.
32. Fasasi, K. A., Awodiran, O. F., Ayeni, D. J., Awoniyi, O. I., Awojide, S. H. Assessment of Bee Honey in some Districts in South-Western Nigeria for Agricultural Pesticide Residues and Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Agricultural Sciences–Sri Lanka, 2024; 19(1). https://doi.org/10.4038/jas.v19i1.9825
33. Giampieri, F., Quiles, J. L., Cianciosi, D., Forbes-Hernández, T. Y., Orantes-Bermejo, F. J., Alvarez-Suarez, J. M., Baono, M. Bee products: An emblematic example of underutilized sources of bioactive compounds. Journal of agricultural and food chemistry, 2022; 70(23): 6833-6848. https://doi.org/10.1021/acs.jafc.1c05822
34. Gulfraz M., Ixikhar F., Imran M., Zeenat A., Asif S., Shah I. Compositional Analysis and Antimicrobial Activity of Various Honey Types of Pakistan. International Journal of Food Science and Technology, 2011; 46(2):263-267. https://doi.org/10.1111/j.1365-2621.2010.02488.x
35. Hashemirad, F. S., Behfar, M., Kavoosi, G. Proximate composition, physico-chemical, techno-functional, amino acid profile, fatty acid profile, nutritional quality, antioxidant, anti-amylase and anti-lipase properties of bee bread, royal jelly, and bee propolis. LWT, 2024; 200:116190. https://doi.org/10.1016/j.lwt.2024.116190
36. Jin, Z., Lin, Z., Chen, M., Ma, Y., Tan, J., Fan, Y., ... Tu, F. Determination of multiple pesticide residues in honey using gas chromatography-electron impact ionization-mass spectrometry. Chinese journal of chromatography, 2006; 24(5): 440-447. https://doi.org/10.1016/S1872-2059(06)60019-9
37. Khalil, M. I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, M. A., Islam, M. N., ... Gan, S. H. Physicochemical and antioxidant properties of Algerian honey. Molecules, 2012; 17(9): 11199-11215. https://doi.org/10.3390/molecules170911199
38. Lekduhur, G. J., Onuwa, P. O., Eneji, I. S., Rufus, S. A. Analysis of selected pesticide residues and heavy metals in honey obtained from Plateau State, Nigeria. Journal of Analytical Sciences, Methods and Instrumentation, 2021;11(1):1-13. https://doi.org/10.4236/jasmi.2021.111001
39. Liew, K. Y., Kamise, N. I., Ong, H. M., Aw Yong, P. Y., Islam, F., Tan, J. W., Tham, C. L. Anti-allergic properties of propolis: Evidence from preclinical and clinical studies. Frontiers in Pharmacology, 2022; 12: Article 785371. https://doi.org/10.3389/fphar.2021.785371
40. Ligor, M., Bukowska, M., Ratiu, I. A., Gadzała-Kopciuch, R., Buszewski, B. Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules, 2020; 25(24): 5817. https://doi.org/10.3390/molecules25245817
41. Malhat, F., Nasr, I. Monitoring of organophosphorus pesticide residues in water from the Nile River Tributaries, Egypt. Nature, 2013;1(1): 1-4. DOI:10.12691/ajwr-1-1-1
42. Manzanares, A. B., García, Z. H., Galdón, B. R., Rodríguez, E. R., Romero, C. D. Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 2011;126(2): 664-672. https://doi.org/10.1016/j.foodchem.2010.11.003
43. Martinello, M., Manzinello, C., Dainese, N., Giuliato, I., Gallina, A., Mutinelli, F. (2021). The honey bee: An active biosampler of environmental pollution and a possible warning biomarker for human health. Applied Sciences, 2021;11(14): 6481. https://doi.org/10.3390/app11146481
44. Molan, P., Betts, J. A. (2004). Clinical usage of honey as a wound dressing: an update. Journal of wound care, 2004;13(9); 353-356. htps://doi.org/10.12968/jowc.2004.13.9.26708
45. Murcia-Morales, M., Heinzen, H., Parrilla-Vázquez, P., del Mar Gómez-Ramos, M., Fernández-Alba, A. R. Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC Trends in Analytical Chemistry, 2022; 146: 116506. https://doi.org/10.1016/j.trac.2021.116506
46. Nainu, F., Masyita, A., Bahar, M. A., Raihan, M., Prova, S. R., Mitra, S., … SimalGandara, J. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics, 2021;10: 822–830. https://doi.org/10.3390/antibiotics10070822
47. Nayar J., Shobhan K. Kiran K. C. Physicochemical Analysis of some Commercial Honey Samples from Telangana, Indian Journal of Nutrition, 2017; 4(1):01-04.
48. Okeola, F. O., Afolabi, B. T., Liadi, M. T., Apo, G. S. Comparative study of Physico-Chemical properties of pure honey harvested from Jatropha curcas plantation and honey fortified with Moringa and Ginger. International Journal of Phytofuels and Allied Sciences, 2015;4(1): 81-92.
49. Omafuvbe, B. O., Akanbi, O. O. Microbiological and physico-chemical properties of some commercial Nigerian honey. African Journal of Microbiology Research, 2009; 3(12): 891-896. https://doi.org/10.5897/AJMR.9000494
50. Oyeyemi SD., Kayode J. and Owolabi MO. Comparative Nutritional Studies on Honey Samples in Ado Ekiti, Ekiti State, Nigeria. Donnish Journal of Medicinal Plant Research 2015;2(2):16-20.
51. Oyinloye, J. A., Oyekunle, J. A. O., Ogunfowokan, A. O., Msagati, T., Adekunle, A. S., Nety, S. S. (2021). Human health risk assessments of organochlorine pesticides in some food crops from Esa-Oke farm settlement, Osun State, Nigeria. Heliyon, 7(7). https://doi.org/10.1016/j.heliyon.2021.e07470
52. Pickova J. Importance of Knowledge on Lipid Composition of Foods to Support Development towards Consumption of Higher Levels of n-3 Fatty Acids via Freshwater Fish. Physiol. Res. 2009; 58(1):39-45.
53. Pirard, C., Widart, J., Nguyen, B. K., Deleuze, C., Heudt, L., Haubruge, E., ... Focant, J. F. Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007;1152(1-2): 116-123. https://doi.org/10.1016/j.chroma.2007.03.035
54. Porrini, C., Sabatini, A. G., Girotti, S., Ghini, S., Medrzycki, P., Grillenzoni, F., ... Celli, G. Honey bees and bee products as monitors of the environmental contamination. Apiacta, 2003; 38(1): 63-70.
55. Quality and Standards Authority of Ethiopia. (2005). Honey specification: Ethiopian standard (ES 1202). Quality and Standards Authority of Ethiopia.
56. Rissato, S. R., Galhiane, M. S., de Almeida, M. V., Gerenuo, M., Apon, B. M.. Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food chemistry, 2007; 101(4): 1719-1726. https://doi.org/10.1016/j.foodchem.2005.10.034
57. Saad, M. A., Abd-Ella, A. A., Abdu-Allah, G. A., Ezz El-Din, H. E. D. A., Mahmoud, H. A., Ahmed, A. M. Toxicological Impact of Certain Pesticides on Honeybee, Apis melliferea L. (Hymenoptera: Apidae) under Iaboratory Conditions. Assiut Journal of Agricultural Sciences, 2023; 54(3): 65-77. https://doi.org/10.21608/ajas.2023.212231.1257.
58. Saxena S., Gautam S. and Sharma A. (2010): Physical, Biochemical, and Antioxidant Properties of Some Indian Honeys. Food Chemistry 2010; 118(2):391-397. https://doi.org/10.1016/j.foodchem.2009.05.001
59. Tavares, D. A., Dussaubat, C., Kretzschmar, A., Carvalho, S. M., Silva-Zacarin, E. C., Malaspina, O., ... Belzunces, L. P. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental pollution, 2017; 229: 386-393. https://doi.org/10.1016/j.envpol.2017.05.092.
60. Tesi, G. O., Felagha, I., Ogbuta, A. A., Ogbomade, W. E., Obodoka, G. C., Iniaghe, P. O., Kpomah, E. D. Levels of endocrine disrupting organochlorine pesticides in herbal medicines from Bayelsa State, Nigeria: Any threat to public health? Toxicology and Environmental Health Sciences, 2024;16(4): 595-606. https://doi.org/10.1007/s13530-024-00237-5
61. Tison, L., Franc, C., Burkart, L., Jactel, H., Monceau, K., de Revel, G., Thiéry, D. Pesticide contamination in an intensive insect predator of honey bees. Environment International 2023; 176: 107975. https://doi.org/10.1016/j.envint.2023.107975.
62. Toma, I., Jefferson, J., Clifford, L., Mofio, B. Assessment of heavy metals and pesticide residues in honey samples collected from selected villages in five local government areas of adamawa state, Nigeria. Int. J. Sci.Res. Publ, 2020; 10(9): 383-392. https://dx.doi.org/10.29322/ijsrp.10.09.2020.p10547
63. Tosi, S., Burgio, G., Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific reports, 2017;7(1):1201. https://doi.org/10.1038/s41598-017-01361-8.
64. Wiest, L., Buleté, A., Giroud, B., Fratta, C., Amic, S., Lambert, O et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 2011;1218(34):5743-5756. https://doi.org/10.1016/j.chroma.2011.06.079
65. Xiao, J., He, Q., Liu, Q., Wang, Z., Yin, F., Chai, Y., et al. x. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Science of The Total Environment, 2013; 805:150292. https://doi.org/10.1016/j.scitotenv.2021.150292.
66. Zhang, H., Zhu, X., Huang, Q., Zhang, L., Liu, X., Liu, R., et al. Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatographyquadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chemistry, 2023; 409: Article 135342. https://doi.org/10.1016/j.foodchem.2022.135342
67. Zioga, E., Kelly, R., White, B., Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environmental research, 2020;189:109873. https://doi.org/10.1016/j.envres.2020.109873
Published
2025-05-29
How to Cite
1.
Ogunbo O, Osibogun A, Owagboriaye F, Ariyibi M, Adeyemi A, Julius B, Aina S, Lawal O. Sweet but Toxic: Organophosphate Pesticide Residues in Nigerian Honey as an Emerging Threat to Food Safety and Agriculture. Journal of Agricultural and Biomedical Sciences [Internet]. 29May2025 [cited 28Aug.2025];9(1). Available from: https://journals.unza.zm/index.php/JABS/article/view/1403
Section
General

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: ©️ JABS. Articles in this journal are distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.