Approaches to Soil Resource Inventorization and State of Digital Soil Mapping in Zambia

  • Lydia M Chabala University of Zambia School of Agricultural Sciences, Department of Soil Science, P.O. Box 32379, Lusaka, Zambia
  • Obed Lungu University of Zambia, School of Agricultural Sciences, Department of Soil Science, P.O.Box 32379, Lusaka, Zambia
  • Augustine Mulolwa University of Zambia School of Engineering, Department of Geomatic Engineering, P.O.Box 323 79, Lusaka, Zambia
Keywords: Soil Map, Digital soil rnapplng

Abstract

Soil is a complex system whose quantification and geographical distribution is key to understanding many ecosystem processes. However, this understanding is hampered by lack of high resolution soil maps that enable decisions regarding climate regulation, agricultural management and environmental planning. In view of this, various approaches to soil mapping have been applied. This paper presents a review of soil resource inventorization and the state of digital soil mapping in Southern Africa, with specific reference to Zambia. It is a synthesis of the conventional approaches available and commonly used for soil mapping. The paper further discusses the current state of digital soil mapping in Zambia in relation to the prevailing worldwide scenario. The review has shown that while extensive work has taken place using conventional methods of soil mapping, less than I % of the work has been done using predictive approaches in Zambia and only for scientific research purposes. This therefore, means that the current methods and techniques in digital soil mapping require further exploration so as to test their application at regional and national levels and to determine the full range of possibilities and outcomes for various combinations of the existing data sources

References

l. Ballentyne A.O., 1965. Soils map of the republic of Zambia, Surveyor General, Ministry ofLands and Mines.
2. Batjes N. H., 2002. Soil parameter estimates for the soil types ofthe worldfor use in global and regional modelling (Version 2.1). ISRIC Report 2002/02c, International Food Policy Research Institute (IFPRI) and International Soil Reference and Information Centre (ISRIC), Wageningen.
3. Batjes N.H., Fischer G., Nachtergaele F.O., Stolbovoy V.S., and van VelthuizenH.T., 1997. Soil data derived from WISEfor use in global and regional AEZ studies (ver. 1.0). Interim Repon IR-97-025, FAO/ IIASA/ ISRIC, Laxenburg (http : //www. i i as a . ac . at/ Admin/ PUB/Documents/1R-97-025.pdf).
4. Behrens T, Forster H, Scholten T, 2006. Digital Soil mapping in Germany- a review. Journal of plant nutrition and soil science, 169, 434-443.
5. Behrens T, Forster H, Scholten T, Steinrucken U, Spies E, GoldschmittM, 2005. Digital soil mapping using artificial neural networks. Joumal of plant nutrition and soil science. 168; 21-33
6. Brammer, H., 1973. Soils of Zambia: Soil Profile Descriptions and an Account of Soil Genesis and Classification. Soil Survey Unit, Soil Survey Report No. Il, Ministry of Rural Development.
7. Brammer, H., 1973. Soils of Zambia. Department of Agriculture, Rural information Services.
8. Breuning-Madsen B.H and Jones R.J.A., 1998. Towards a European soil profile analytical database. In: H.J. Heineke , W. Eckelmann, A.J. Thomasson, R.J.A. Jones, L., Montanarella, B., Buckley (Ed), Land Information Systems: Developmentsforplanning the sustainable use of land resources. Office for Official Publications of the European Community, Luxembourg, pp 43-49
9. Bui E.N. , Henderson B ., Mora J. R., and Johnston R., 2003. Continental-scale spatial modelling of soil properties. Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, August 14 — 20, 2002. Symposium no.
10. CambuleA. H., Rossiter D.G., and . Stoorvogel J.J. 2013 Amethodology for digital soil mapping in po or ly Science areas. Geodenna 192(2013) 341—353. — 841.
11. Centre for Technical Research of Cotton (CICA). 1948. Soil map of Mozambique; scale 1:6million.
12. Connolly J, Holden NM, and Ward SM, 2007. Mapping Peatlands in Ireland Using a Rule-Based Methodology and Digita1 Data. SSSAJ. 2007.71 (4), 492-499.
13. Dale MB, McBratney AB, and Russell JS, 1989. On the role of expert systems and numerical taxonomy in soil classification. Journal of Soil Science. 1989. 40, 223— 234
14. Dent, D. , and Young, A. , 1981. Soil Survey and Land Evaluation. George Allen and Unwin Publishers limited. UK,pp278.
15. De Wit, P.V., and Nachtergaele, F.O., 1990. Explanatory note on the soil map of the Republic of Botswana. FAO/UNDP/GOB Soil Mapping and Advisory Services Project BOT/85/011. Field Doc. 30. Gaborone.
16. Dokuchaev, V.V., 1883. Russian Chernozems (Russkii Chernozems). Israel Prog. Sci. Trans., Jerusalem, transl. from Russian by N. Kaner (1967), available from U.S. Dept ofCommerce, Springfield, VA.
17. FAO. , 2004. Drought impact mitigation and prevention in the Limpopo river basin: a situation analysis. Land and water Discussion paper 4.
18. FAO/IIASA/ISRIC/ISS-CAS/JRC., 2009. Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Luxemburg, Austria
19. FAO-ISRIC., 2003. Soil and terrain database for southern Africa. Land and Water Digital Media Series 25.
20. FAO-ISSS-ISRIC., 1998. World reference base for soil resources. World Soil Resources Report No. 84. Rome.
21. FAO/UNESCO 1971-1981., The FAO-UNESCO Soil Map of the World. Legend and 9 volumes. UNESCO, Paris.
22. FAO-UNESCO., 1974a. Soil map ofthe world. Volume 1: Legend. Paris.
23. FAO-UNESCO., 1974b. Soil map ofthe world. Volume 6: Africa. Paris.
24. Glinka, K.D. 1927., The great soil groups of the world and their development. (Translated from German by
C.F. Marbut). Edwards Brothers, Ann Arbor, Michigan
25. Government of South Africa (GOSA)-Land Type Survey Staff., 1997. Generalizedsoil patterns. 1: 2.5 million scale map. Pretoria, ARC-Institute for Soil, Climate and Water.
26. Government of Zimbabwe (GOZ)-DRSS., 1979 Harare, 52, paper no. 1470, 8 pp.Dept. Research Specialist
27. Hudson, BD,1992. The Soil Survey as a Paradigm based Soil Science Society ofAmerica Journal, 56, 836 accessible
28. Jenny, H. , 1941. E.W. Hilgard and the Birth ofModern Soil Science. Farallo Publication, Berkley, California.
29. Lagacherie, P., McBratney, A.B., and Voltz, M. , 2006. Digital Soil mapping: An introductory Perspective.
Developments in Soil Science, Elsevier, Amsterdam
30. Lamp, J, and Kneib, W, 1981. Zur quantitaven erfassauung und bewertung von pedofukteonen mittlgn.
Dtsch. Bodenkundl. Gesellsgh. 32, 695-711.
31. Lehmann, D., Billen, N., and Lenz, R., 1999. Anwendung von Neuronalen Netzen in der Landschaftsokogie
Synthetische Bodenkartierung im GIS, in Strobl, J., Blaschke, T.; Anwendung von Neuronalen Netzen in der Landschaftsokologie-Synthetische Bodenkartierung im GISBook. Wichmann, Heidelberg, pp 330-336.
32. McBratney AB, Mendonca Santos ML, and Minasny B, 2003. On digital soil mapping. Geoderma. 2003 117, 352.
33. Minasny B, Hopmans JW, Harter T, Eching SO, Tuli A, and Denton M, 2004 . Neural networks prediction of soil hydraulic functions from multi-step outflow data. Soil Sci. Am. J. 2004 68,417-429.
34. MulderVL, de Bruin S, ME, MayrTR, 2011. The use ofremote sensing in soil and terrain mapping -Areview. Geoderma. 2011 162, 1-19.
35. Nyamaphene, K., 1991. Soils of Zimbabwe. Harare, Nehanda Publishers.
36. Pleijsier, K. , 1989. Variability in soil data. In: Bouma J and AK Bregt (Ed), Land Qualities in Space and Time. PUDOC, Wageningen, pp 89-98.
37. Remmelzwaal A., 1998. Report on technical assistance provided to the Institute of Soil, Climate and Water for the development of a Land Resources Information System (SOTER). Consultants report. Wageningen, the Netherlands, ISRIC/Pretoria, GOSA-Land Type Staff.
38. Rossiter D.G., 2000. Methodology for soil resource inventories. Inter-national Institute for Aerospace Survey and Earth Sciences. Soil Science Division. Available from: http: // www, itc.nl /—rossite r/teach /ssm/SSM LectureNotes2.pdfble. [accessed 2 1 July 2014]
39. Schokalsky, Z.J., 1943. Soil map ofMozambique.
40. Shalwindi FKM., 1985. The Vegetation of Zambia.
Proceedings of the ll th Intemational Forum on Soil Taxonomy and Agrotechnology Transfer, July 15 —August l, Lusaka, Zambia.
41. Shepande, C. , 2010. Development of geospatial tools for inventory and mapping ofsoils ofthe Chongwe Region of Zambia. Ph.D. Thesis, University of Minnesota
42. Soil Survey Unit. 2011. Memoirs of the 1991 Exploratory Soil Map ofZambia. Edited by Sokotela S. (Unpublished Report).
43. Soil Survey Section, 1991. National Soils Map of Zambia. Ministry of Agriculture.
44. Soil Survey Staff. 1975. Soil taxonomy. Handbook No.436. Washington, DC, U.S. Dept. of Agriculture
45. Stoorvogel JJ, Kempen B, Heuvelink GBM, de Bruin S, 2009. Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma 149 (1-2), 161-170.
46. Thompson JA, Prescott T, MooreAC, Bell JS, Kautz D, Hempel J, Waltman SW, Perry CH. 2010. Regional Approach to Soil Property Mapping using Legacy Data and Spatial Disaggregation Techniques B. Methods and data requirements for predictive soil mapping." In Proceedings of 19th World Congress of Soil Science, Soil
Solutions for a Changing World, I — 6 August 2010, Brisbane, Augtralia, 1 -4.
47. Trapnell, C.G., Clothier J.N., 1996. Soils, vegetation and Traditional Agriculture of Zambia. Vol I (Ecological Survey 1932 -1936) Ministry o Agriculture Food and Fisheries. Redcliffe Press.
48. Van Ranst E. , Vanmechelen L. , Thomasson A.J., Daroussin J., Hollis J.M., Jones R.J.A., Jamagne M. King D., 1995. Elaboration of an extended knowledge database to interpret the 1: 1, 000, 000 EU Soil Map for environmentalpurposes. In: D. King, R.J.A. Jones &A.J. Thomasson (Eds.). European Land Information Systems for Agro-environmental Monitoring. EUR 16232 EN, p. 71-84. Office for Official Publications of the European Communities, Luxembourg.
49. Van Reeuwijk, L.P., 1983. On the way to improve international soil classification and correlation: the variability of soil analytical data. Annual Report 1983 ISRIC, Wageningen http:// www. isric. org/isric/ webdocs/Docs/annual_report_1983 .pdf, p. 7-13).
50. Veldkamp, W.J., 1984. Soil Classification, first approximation. Soil Survey Unit, Technical Guide no. 14.
51. Veldkamp, w.J., Muchinda M., Delmotte A.P., 1984. Agro-ecological zones in Zambia. Soil Bulletin No. 8. Soil Survey Unit.
52. Veldkamp w.J., 1987. soils of Zambia. soil Bulletin No. 13. Soil Survey Unit. Ministry of Agriculture and Water Development.pp58
53. Vogel A.W. , 1994. Comparability ofsoil analytical data: determinations of cation exchange capacity, organic carbon, soil reaction, bulk density, and volumepercentage ofwater at selectedPF values by different methods. Work. Pap. 94/07, ISRIC, Wageningen.
54. Webster R. , Oliver MA. , 2001. Geostatistics for Environmental Scientists. Wiley Wiley, Chichester
55. Wei S, McBratneyA, Hempel J, Minasny B, Malone B, D'avellot, Bu.Rras, Thompson J, 2010. Digital
Harmonisation ofAdjacentAnalogue Soil Survey areas - 4 Iowa Counties. In Proceedings of 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1 — 6 August 2010, Brisbane, Australia, 1-4.
56. Wosten H, NemesA, PachepskyY, Rawls W, Zeiliguer A. 2002. Translating available soil basic data in missing soil hydraulic characteristics. 17th World Soil Science congress, Bankok, Symposium 4, p 135.
57. ZhuA., Burt E.J., Moore C.A., Smith P.M., Liu J., Qi F., 2005. SoLIM:ANew Technology for Soil Mapping Using GIS, Expert Knowledge and Fuzzy Logic. NRCS, USDA.
56. Zhu AX, Mapping soil landscape as a spatial continua: the neural network approach. Water Resour. Res. 2000 36, 663-66
Published
2025-09-23
How to Cite
1.
Chabala L, Lungu O, Mulolwa A. Approaches to Soil Resource Inventorization and State of Digital Soil Mapping in Zambia. Journal of Agricultural and Biomedical Sciences [Internet]. 23Sep.2025 [cited 14Oct.2025];2(2):62-8. Available from: https://journals.unza.zm/index.php/JABS/article/view/1563
Section
Agriculture Sciences